No one remembers when the second team wins: Strategies of rhinovirus immune manipulation

Peter Kim and Fred Adler

University of Utah
Departments of Mathematics and Biology

January 11, 2010

The sadly neglected rhinoviruses

Influenza

- One or two types per year
- Potentially deadly
- Lifelong immunity
- Peak in the winter

www.state.nj.u

The sadly neglected rhinoviruses

Influenza

- One or two types per year
- Potentially deadly
- Lifelong immunity
- Peak in the winter

www.state.nj.u

Rhinovirus

- Over 100 co-circulating serotypes
- Mild infections
- Limited and temporary immunity
- Peak in fall and spring

Why are they so mild?

- Why are they so mild?
- Why don't we seem to become immune?

- Why are they so mild?
- Why don't we seem to become immune?
- How does the body clear them with both limited pathology and limited immune response?

- Why are they so mild?
- Why don't we seem to become immune?
- How does the body clear them with both limited pathology and limited immune response?
- Why do we get them primarily in the fall and spring?

- Why are they so mild?
- Why don't we seem to become immune?
- How does the body clear them with both limited pathology and limited immune response?
- Why do we get them primarily in the fall and spring?
- Why are there so many?

The phylogeny of rhinoviruses

• There are about 90 Major and 12 minor group viruses

- There are about 90 Major and 12 minor group viruses
- All of the minor group viruses fall within HRV-A

- There are about 90 Major and 12 minor group viruses
- All of the minor group viruses fall within HRV-A
- The two groups use different cell surface receptors

- There are about 90 Major and 12 minor group viruses
- All of the minor group viruses fall within HRV-A
- The two groups use different cell surface receptors
- Frequency of minor group fairly constant in classic studies

Major group rhinoviruses attach to ICAM-1

- Major group rhinoviruses attach to ICAM-1
- Expression of ICAM-1 on macrophages and dendritic cells is increased by the inflammatory cytokines induced by rhinovirus infection

- Major group rhinoviruses attach to ICAM-1
- Expression of ICAM-1 on macrophages and dendritic cells is increased by the inflammatory cytokines induced by rhinovirus infection
- Viruses attach to these receptors

- Major group rhinoviruses attach to ICAM-1
- Expression of ICAM-1 on macrophages and dendritic cells is increased by the inflammatory cytokines induced by rhinovirus infection
- Viruses attach to these receptors
- Although they cannot infect white blood cells, viral attachment makes these cells less quick to move to the lymph node and more likely to produce IL-10

- Major group rhinoviruses attach to ICAM-1
- Expression of ICAM-1 on macrophages and dendritic cells is increased by the inflammatory cytokines induced by rhinovirus infection
- Viruses attach to these receptors
- Although they cannot infect white blood cells, viral attachment makes these cells less quick to move to the lymph node and more likely to produce IL-10
- Minor group viruses attach to members of the Low Density Lipoprotein receptor family, which are not known to have these effects

Kirchberger, 200

Minor group induce more immunity

Major group viruses induce immunity in a minority of patients, minor group viruses induce immunity in a majority of patients. Fox, 1985

Effects of rhinovirus interference

- Antigen Presenting Cells
 - Delayed in periphery
 - 2 May arrive in lymph node in a tolerogenic state

Effects of rhinovirus interference

- Antigen Presenting Cells
 - Delayed in periphery
 - May arrive in lymph node in a tolerogenic state
- APC produced IL-12
 - f 1 In periphery, activates NK cells to produce IFN- γ
 - In lymph node, activates appropriate Th1 response

The viral dynamics module

- V is free virus, S susceptible cells, I infected cells
- ullet D_A and D_V are activated and virally-bound dendritic cells
- ullet N and T_E are natural killer and effector T-cells

The dendritic cell module

- D_N , D_A and D_V are naive, activated and virally-bound dendritic cells in the periphery
- D_L , and D_{LV} are unbound and virally-bound dendritic cells in the lymph node

The T-cell module

- T_L , T_E and T_M are activated, effector and memory T cells
- k describes how virally-bound dendritic cells inhibit a T cell response in the lymph node

Parameters..

• Can estimate all of the rate constants to within an order of magnitude

Parameters...

- Can estimate all of the rate constants to within an order of magnitude
- ullet Use an internal R_0 of about 10 to get some binding rates

Parameters...

- Can estimate all of the rate constants to within an order of magnitude
- Use an internal R_0 of about 10 to get some binding rates
- Experiment with the key parameters β_D , μ_V and k that describe virus binding to dendritic cells, interference with dendritic cell migration to the lymph node, and interference with the T cell response

Does it work?

Dynamics in the low memory case

When viruses stick to dendritic cells, slow their movement, and interfere with T cell activation, get low damage and almost no memory.

Dynamics in the high memory case

When viruses do not stick to dendritic cells, get moderate damage and high memory.

Dynamics in the high damage, low memory case

When viruses stick to dendritic cells, do not slow their movement, and interfere with T cell activation, get high damage and almost no memory.

Placing in an evolutionary contex

 Find the optimum levels of parameters with perfect cross-reactivity: Transmission should trump prevention of memory every time, but delaying the T cell response could extend the infection

Placing in an evolutionary context

- Find the optimum levels of parameters with perfect cross-reactivity:
 Transmission should trump prevention of memory every time, but delaying the T cell response could extend the infection
- Model the interaction of immune dynamics with the evolution of diversity and immune escape

Placing in an evolutionary context

- Find the optimum levels of parameters with perfect cross-reactivity:
 Transmission should trump prevention of memory every time, but delaying the T cell response could extend the infection
- Model the interaction of immune dynamics with the evolution of diversity and immune escape
- Evaluate the possible importance of coinfection in maintaining the minor group viruses as "cheaters" that hijack the ability of Major group viruses to suppress the immune response

Placing in an evolutionary context

- Find the optimum levels of parameters with perfect cross-reactivity:
 Transmission should trump prevention of memory every time, but delaying the T cell response could extend the infection
- Model the interaction of immune dynamics with the evolution of diversity and immune escape
- Evaluate the possible importance of coinfection in maintaining the minor group viruses as "cheaters" that hijack the ability of Major group viruses to suppress the immune response
- Use new genetic and epidemiological data to refine these models and hypotheses

Acknowledgments

- William Koppelman
- Brendan O'Fallon
- Jon Seger
- Wayne Potts
- Utah Theoretical Immunology Group (Courtney Davis, Amber Smith, Giao Huynh, James Moore, Peter Kim, Erica Graham)
- Modeling the Dynamics of Life fund
- James S. McDonnell Foundation
- NSF IGERT and RTG programs

^{*} No computers were mistreated by the use of Microsoft products in creating this talk